Composition/Property/Performance Correlations For Rational Development of Renewable Aviation Fuels

Mark Romanczyk1, Katherine Wehde1, Lan Xu1, Brent Modereger1, Nathaniel Roe1, Eion Keating1, Pet Vozka1, Jorge Ramirez Velasco2, John Healy3, Alex Gordon3, Rodney Trice1, Godzem Kilaz2, Hilkka Kenttämäi1

1Department of Chemistry, 2School of Engineering Technology, and 3Department of Materials Engineering, Purdue University

Introduction:
Cost and time intensive fuel certification protocol is a challenge to the deployment of alternative aviation fuels. Our research aims at mitigating this hurdle by establishing correlations between the chemical composition of fuel, its properties and its performance. Aromatic compounds, such as alkylbenzenes, are an example of compounds affecting fuel performance. We explored correlations of alkylbenzenes' structures with O-ring swelling. Parallel investigation was executed on the effects of biofuel impurities on gas turbine combustion chamber components, such as blades, vanes and other hot sections.

Methods:
- Two-dimensional gas chromatography coupled with high resolution time-of-flight mass spectrometry (GC/TOF MS): identification of structures of alkylbenzenes in fuels.
- MTS Insight: O-Ring tensile test
- Nikon optometer: measurement of the thickness of O-rings

Conclusions:
GC/TOF MS was used to identify alkylbenzenes in fuels and additives. The exact structure of alkylbenzenes doped into FT-S8 was demonstrated to influence the extent of O-ring swelling, with ethyl benzene being most effective; however when testing the tensile strength of the samples, ethyl benzene weakened the samples the most. Elemental mapping and microscopy analysis provided evidence that silica and alumina products were formed over the surface and in the cracks of the ceramic coatings, hastening delamination and premature failure of gas turbine components.

Future plans:
- Measure properties of fuel samples (Jet A/alt. blending components with different classes of hydrocarbons) using ASTM approved devices and apparatuses:
 - Stabinger Viscometer SVM 3001: density and viscosity
 - TAG 4 Flash Point Tester: flash point
 - 6200 Isoperibol Calorimeter: net heat of combustion
 - K29700 Apparatus: freezing point
- Distillation apparatus: distillation profile

Next steps:
- We will measure the physical properties of fuel with different classes of hydrocarbons. We will expand the fuel specific databank to interconnect properties to chemical composition.

Goal: Establish a databank of conventional and alternative aviation fuel constituents to be utilized in developing correlations between chemical composition, engine performance, and material performance. Our mission is to serve towards Navy’s alternative energy goals while training and educating midshipmen and US military personnel.

Materials and Methods:
- Distillation apparatus: distillation profile
- Flash Point Tester: flash point
- Density tester
- Stabinger Viscometer SVM 3001: density and viscosity
- TAG 4 Flash Point Tester: flash point
- Isoperibol Calorimeter: net heat of combustion
- K29700 Apparatus: freezing point
- Distillation apparatus: distillation profile

Results and Discussion:
- Identification of alkylbenzenes via GC/TOF MS
- Hydrocarbon classes identified via GC/TOF MS
- O-Rings tensile test after biofuel exposure
- Biofuel impurities effect in the ceramic coatings

Next steps:
- Quantitative and qualitative analysis of the corrosive glass products and damage evaluation, multifactor study of O-ring degradation.

Acknowledgments:
We are preparing a model that can predict fuel properties based on chemical composition. One such property is the fuel's freezing point that depends on hydrocarbon concentrations. Below is the list of properties to investigate:
- freezing point
- aromatics (% vol.)
- density
- distillation
- viscosity
- flash point
- net heat of combustion

Future plans:
- Measure properties of fuel samples (Jet A/alt. blending components with different classes of hydrocarbons) using ASTM approved devices and apparatuses:
- Stabinger Viscometer SVM 3001: density and viscosity
- TAG 4 Flash Point Tester: flash point
- 6200 Isoperibol Calorimeter: net heat of combustion
- K29700 Apparatus: freezing point
- Distillation apparatus: distillation profile

Conclusion:
We explored correlations of alkylbenzenes’ structures with O-ring swelling. Parallel investigation was executed on the effects of biofuel impurities on gas turbine combustion chamber components, such as blades, vanes and other hot sections. We are preparing a model that can predict fuel properties based on chemical composition. One such property is the fuel’s freezing point that depends on hydrocarbon concentrations. Below is the list of properties to investigate:
- freezing point
- aromatics (% vol.)
- density
- distillation
- viscosity
- flash point
- net heat of combustion